Package: bacistool 1.0.0
bacistool: Bayesian Classification and Information Sharing (BaCIS) Tool for the Design of Multi-Group Phase II Clinical Trials
Provides the design of multi-group phase II clinical trials with binary outcomes using the hierarchical Bayesian classification and information sharing (BaCIS) model. Subgroups are classified into two clusters on the basis of their outcomes mimicking the hypothesis testing framework. Subsequently, information sharing takes place within subgroups in the same cluster, rather than across all subgroups. This method can be applied to the design and analysis of multi-group clinical trials with binary outcomes. Reference: Nan Chen and J. Jack Lee (2019) <doi:10.1002/bimj.201700275>.
Authors:
bacistool_1.0.0.tar.gz
bacistool_1.0.0.zip(r-4.5)bacistool_1.0.0.zip(r-4.4)bacistool_1.0.0.zip(r-4.3)
bacistool_1.0.0.tgz(r-4.4-any)bacistool_1.0.0.tgz(r-4.3-any)
bacistool_1.0.0.tar.gz(r-4.5-noble)bacistool_1.0.0.tar.gz(r-4.4-noble)
bacistool_1.0.0.tgz(r-4.4-emscripten)bacistool_1.0.0.tgz(r-4.3-emscripten)
bacistool.pdf |bacistool.html✨
bacistool/json (API)
# Install 'bacistool' in R: |
install.packages('bacistool', repos = c('https://jjacklee116.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 years agofrom:a7a336e0ee. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 06 2024 |
R-4.5-win | OK | Nov 06 2024 |
R-4.5-linux | OK | Nov 06 2024 |
R-4.4-win | OK | Nov 06 2024 |
R-4.4-mac | OK | Nov 06 2024 |
R-4.3-win | OK | Nov 06 2024 |
R-4.3-mac | OK | Nov 06 2024 |
Exports:bacisCheckDICbacisClassificationbacisOneTrialbacisPlotClassificationbacisSubgroupPosteriorbacisThetaPosterior
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Compute the DIC value for the classification model. | bacisCheckDIC |
Conduct classification for subgroups. | bacisClassification |
Running one trial computation based on the BaCIS model. | bacisOneTrial |
Plot the posterior density of theta in the classification model. | bacisPlotClassification |
Compute the posterior distribution of response rates of subgroups using the BaCIS method. | bacisSubgroupPosterior |
Compute the posterior distribution of theta in the classification model. | bacisThetaPosterior |